Математические развлечения и игры — Большая советская энциклопедия
Математическими развлечениями называют обычно разнообразные задачи и упражнения занимательного характера, требующие проявления находчивости, смекалки, оригинальности мышления, умения критически оценить условия или постановку вопроса: в частности — головоломки, задачи на превращение одной фигуры в другую путём разрезания и переложения частей, фокусы, основанные на вычислениях, математические игры. К математическим играм относят либо игры, имеющие дело с числами, фигурами и тому подобным, либо игры, исход которых может быть предопределён предварительным теоретическим анализом. С появлением и развитием математических игр теории (См. Игр теория) термин «математические игры» (в смысле этой статьи) постепенно выходит из употребления.
Игра Баше. Из кучки, содержащей n (например, 35) предметов, двое играющих берут поочерёдно не более чем по m (например, 5) предметов. Выигрывает тот, кто возьмёт последние предметы. Теория игры устанавливает, что если n
Игра «15». Играет один человек. На шестнадцатиклеточной доске расположены в случайном порядке 15 перенумерованных шашек. Передвигая шашку одну за другой на свободную клетку с любой из смежных с ней клеток, требуется упорядочить расположение шашек (привести к нормальному расположению — положению 1, указанному на рисунке 1). Теоретический анализ игры, известный с 1879, показывает, что задача может быть решена только в том случае, если число инверсий (См. Инверсия) (то есть число нарушений нормального расположения), образуемых номерами шашек в исходном положении, имеет ту же чётность, что и номер строки, в которой есть свободная клетка. Чтобы установить число инверсий, надо для каждой шашки подсчитать число предшествующих ей шашек с большим номером и сложить все эти числа; их сумма и равна искомому числу инверсий. При этом устанавливается следующая последовательность в исходном расположении шашек: слева направо вдоль строк и сверху вниз при переходе от одной строки к другой. Например, в расположении II ( рис. 1) число инверсий чётно (равно 38), а свободная клетка находится в чётной (во 2-й) строке, то есть расположение II может быть приведено к нормальному. Напротив, расположение III привести к нормальному невозможно, так как число инверсий в нём нечётно (равно 1: шашка с № 15 предшествует шашке с № 14), а свободная клетка находится в 4-й строке (в строке с чётным номером).
Полное математическое обоснование имеется также у таких М. р. и и., как вычерчивание фигур одним росчерком, лабиринты, комбинированные задачи на шахматной доске и другие. Большая группа М. р. и и. связана с поисками оригинальных и красивых решений задач, допускающих практически неисчерпаемое или даже бесконечное множество решений.
К числу таких развлечений относится, например, «составление паркетов» — задача о заполнении плоскости правильно чередующимися фигурами одного и того же вида (например, одноимёнными правильными многоугольниками) или нескольких данных видов. Если «двухцветный квадратный паркет» с осями симметрии
Очень большое, до сих пор точно не установленное число решений имеют также: задача Эйлера о шахматном коне — обойти ходом коня шахматную доску, побывав на каждой клетке по одному разу, и задача о составлении многоклеточных магических квадратов (См. Магический квадрат). В подобного рода задачах интересуются обычно определением числа решений, разработкой методов, дающих сразу большие группы решений. Математическое содержание ряда других М. р. и и. — в установлении наименьшего числа операций, необходимых для достижения поставленной цели. К таким развлечениям относятся: задачи типа «переправ», «размещений» или игры, аналогичные игре «ханойская башня», суть которой в подсчёте числа ходов, необходимых для перенесения пластинок со столбика А (см. рис. 3) на столбик С, пользуясь столбиком В, если за один ход можно переносить лишь одну пластинку с любого столбика на любой другой, но нельзя класть большую пластинку выше меньшей.
М. р. и и. пользовались вниманием многих крупных учёных [Леонардо Пизанский (13 век), Н. Тарталья (16 век), Дж. Кардано (16 век), Г. Монж (2-я половина 18 — начало 19 века), Л. Эйлер (18 век) и другие]. Сборники М. р. и и. начали появляться с 17 века. Содействуя повышению интереса учащихся к математике, развитию сообразительности, настойчивости и внимания, М. р. и и. применяются также и в педагогическом процессе. В России это нашло отражение уже в «Арифметике» Л. Ф. Магницкого (1703) и даже в математических рукописях 17 века.
Лит.: Игнатьев Е. И., В царстве смекалки или арифметика для всех, 2 изд., кн. 1—3, М. — Л., 1924 — 25; Кордемский Б. А., Математическая смекалка, 8 изд., М., 1965; Перельман Я. И., Живая математика, 9 изд., М., 1970: его же, Занимательная арифметика, 9 изд., М., 1959; его же, Занимательная алгебра, 12 изд., М., 1970; его же, Занимательная геометрия, 11 изд., М., 1959; Шуберт Г., Математические развлечения и игры, перевод с немецкого, Одесса, 1911; Арене В., Математические игры, перевод с немецкого, Л. — М., 1924; Гарднер М., Математические чудеса и тайны. Математические фокусы и головоломки, перевод с английского, 2 изд., М., 1967; его же, Математические досуги, перевод с английского, М., 1972.
Рис. 3 к ст. Математические развлечения и игры.
Рис. 2 к ст. Математические развлечения и игры.
Рис. 1 к ст. Математические развлечения и игры.
Источник: Большая советская энциклопедия на Gufo.megufo.me
«МАТЕМАТИЧЕСКИЕ ИГРЫ – ПОЗНАВАТЕЛЬНЫЙ ДОСУГ»
«МАТЕМАТИЧЕСКИЕ ИГРЫ – ПОЗНАВАТЕЛЬНЫЙ ДОСУГ»
Змеевская А.В. 11МАОУ СОШ №3 г. Черепанова
Петухова О.А. 11МАОУ СОШ №3
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF
В математике есть своя красота, как в
живописи и поэзии.
(Н.Е. Жуковский)
1. Введение.
В этом году я перешла из начальной в основную школу. Учиться в 5 классе очень интересно, но, разумеется, сложнее, чем в начальных классах. Произошло много изменений и к тем предметам, которые мы изучали, добавились новые.
Математика изучается в школах с 1 по 11 класс. Я и мои одноклассники любят этот предмет. Все изучают математику с удовольствием, и каждый урок стремятся открыть для себя что-то новое. Мы участвуем в чемпионатах и олимпиадах по этому предмету, а некоторые ученики даже посещают математический кружок. Математика – мой самый любимый урок, и поэтому когда нужно было выбрать учебный предмет, по которому я буду разрабатывать исследование, долго думать не пришлось.
Математика – серьезная и точная наука. Но мне хотелось провести не только научное, но и действительно интересное для меня исследование. Иными словами и познавательное и развлекательное. Но что же может объединить серьезную научную дисциплину и развлечения? — Математические игры.
Математические игры – это строго определённые математические объекты. Игра образуется игроками, набором стратегий для каждого игрока и указания выигрышей игроков для каждой комбинации стратегий.
Обычно мы играем в математические игры с развлекательной целью, но без определенного плана победить не просто. Для этого и нужна стратегия – порядок действий, который точно приведет к выигрышу. Так связаны игры и математика.
Сейчас сфера математических игр хорошо развивается и, наверное, все хотят успешно решать подобные задания в олимпиадах и на уроках, поэтому я считаю свое исследование актуальным и результативным
Я решила поподробнее изучить математические игры и попробовать самой составить к некоторым из них стратегию выигрыша.
Объект исследования: математические игры.
Предмет исследования: стратегии математических игр
Цель моей работы: изучение математических игр, обучение составлению стратегий к играм.
Задачи, над которыми я работала:
1. Познакомиться с историей появления математических игр и подумать, чем же они полезны.
2. Узнать, какие типы математических игр существуют
и как их различать
3. Узнать, если какая-нибудь научная теория относительно математических игр.
4. Уточнить смысл термина «стратегия», «инвариант».5. Понять, как составляются стратегии к определенным типам математических игр.
6. Составить стратегии к играм разного типа.
7. Обобщить полученную информацию и представить результат исследования в виде буклета.
8. Составить сборник авторских игровых задач.
Гипотеза: если я внимательно изучу методы нахождения стратегий и типы математических игр, научусь различать типы игр, то возможно смогу достичь своей цели.
Новизна: для меня нахождение стратегий для математических игр – это новый вид деятельности.
Методы исследования: размышления, поиск информации в Интернете, в специальной литературе, практический метод, анализ результатов.
2.Основная часть.
2.1. История появления математических игр.
Открыв интернет, я узнала, что некоторые математические игры появились еще в древности. Создавали такие игры еще древнегреческие математики.
А вот происхождение определенных игр до сих пор остается тайной. Например, о том, как появились всем известные крестики-нолики, бытует множество мнений. По одной из версий их случайно изобрел неизвестный французский математик, решая трехуровневую систему уравнений, по другой – крестики-нолики появились в Индии около 2000 лет назад.
Множество математических игр было изобретено в периоде 12 – 20 веков. Так, Леонардо Пизано в 1202 г. изобрел математическую игру «Баше» (современное название – «Ним»). Баше – математическая игра, в которой два игрока из кучки, содержащей первоначально N предметов, по очереди берут не менее одного и не более М предметов. Проигравшим считается тот, кому нечего брать.
Названа игра в честь французского поэта и математика Баше де Мезирьяка, который предложил её в своей книге «Занимательные и приятные числовые задачи», вышедшей в 1612 г.
В 1975 г. был запатентован всем известный «Кубик Рубика». Эта игра-головоломка была изобретена венгерским скульптором и преподавателем архитектуры Эрнё Рубиком в 1974 г. Примечательно то, что сам Рубик так и не научился быстро поворачивать грани куба до нужного положения.
А в 1979 году появилась одна из популярнейших математических игр – судоку. Автором головоломки был Гарвард Гарис. Он использовал принцип латинского квадрата Эйлера, применил его в матрице размерностью 9х9 и добавил дополнительные ограничения, цифры не должны повторяться и во внутренних квадратах 3х3.
Я рассказала вам о том, как появились некоторые известные математические игры и, к сожалению, еще многое о происхождении этой сферы математики остается загадкой, ведь возможно, многие верные рассуждения по созданию математических игр забывались, не патентовались или же на них просто не обращали внимание. Но, исходя из полученной мной информации, можно сделать вывод: математические игры и в качестве развлечения на досуге, и в качестве серьезных тем для научных открытий были популярны во все времена.
2.2. Полезность математических игр.
Это конечно хорошо, что ученые придумывают новые и новые математические игры. Несомненно, это помогает в решении других математических задач, может послужить темой для научных открытий и выполнять другие важные глобальные роли. Но как умение составлять стратегии к играм и само умение играть может помочь в жизни обычных школьников?
Для начала я разобралась, с какими науками тесно связано умение играть в такие игры. Оказалось, что чаще всего методы стратегий в математических играх находят применение в экономике, чуть реже в других общественных науках — социологии, политологии, психологии, этике. Доказать это можно тем, что математика сама по себе приводит ум в порядок, а интересная задача может помочь расслабиться и отвлечься от внешних проблем, а значит – расслабить нашу психику. Также психологи и социологи должны рассматривать самые выигрышные и точные пути для того чтобы правильно поставить вопрос или помочь пациенту. В экономике и политологии умение действовать по плану тоже высоко ценится, ведь нужно правильно рассчитать бюджет или уметь наладить отношения между странами.
Информацию я получила, но ведь это опять же глобальные проблемы. Тогда какое же имеет отношение умение составлять стратегии к ученикам?
Возьмем самый банальный случай. Родители дали мне
определенную сумму денег на то, чтобы питаться всю неделю в
школьной столовой выбирая блюда по своему усмотрению.
Естественно, если я в первый же день накуплю кучу вредной и
дорогой еды, то, скорее всего у меня заболит живот от
неправильного питания, да и в следующий раз мне может не хватить на действительно полезное и вкусное блюдо, или если я сильно проголодаюсь. Но если я грамотно распределю свои затраты на еду каждый день, то, возможно в конце недели у меня останутся еще деньги. Второй вариант и будет являться в данном случае верной стратегией.
Другой пример: нужно пересказать большой текст на оценку. Если я начну нервничать и зазубривать, то, скорее всего у меня ничего не выйдет. Если же для начала составить план текста, поделив его на части, выбрать из каждой части основное, и, понимая, о чем идет речь прочитать его, а потом попробовать рассказать, о чем был текст, то у меня получится передать главную мысль, а значит пересказать. Второй случай – верная стратегия.
Так же можно выделить и следующие цели применения математических игр:
-
Развитие мышления;
-
Углубление теоретических знаний;
-
Самоопределение в мире увлечений и профессий;
-
Организация свободного времени;
-
Общение со сверстниками;
-
Воспитание сотрудничества и коллективизма;
-
Приобретение новых знаний, умений и навыков;
-
Формирование адекватной самооценки;
-
Развитие волевых качеств;
-
Контроль знаний;
-
Мотивация учебной деятельности и др.
Итак, я разобралась, как знание и умение правильно составлять стратегии помогает в разных повседневных жизненных ситуациях, а начинать учиться этому лучше всего на примере математических игр.
2.2. Типы математических игр и их особенности.
Все математические игры разные. Даже на первый взгляд можно отличить игру-головоломку от игры-шутки.
На самом деле математических игр гораздо больше, чем мы думаем и для того, чтобы уметь их различать ученые решили классифицировать игры по типам стратегий, форме игры, правилам и т.д.… И сейчас я расскажу вам о том, какие типы игр различают математики.
Математические игры делятся на 4 основные группы: игры с инвариантом, игры на доведение до числа, игры-шутки, игры на симметрию.
Игры с инвариантом включают в себя какое-нибудь неизменяемо свойство предмета. Если вычислить его, то можно будет легко найти стратегию или правильно ответить на вопросы, если это задача.
Стратегия игр на доведение до числа заключается в приведении всех ходов к контрольному числу, имеющему какое-то особенное свойство. После этого действия выиграть становится легко.
В игре-шутке победить очень просто, ведь ее стратегия часто скрывается в последовательности и числе ходов, количестве частей и других подобных им факторов.
А чтобы победить в игре на симметрию нужно повторять все действия соперника в зеркальном отражении. При этом используется следующее правило: если соперник может поставить точку в тетрадной клетке, то я могу поставить точку в клетке напротив.
Знание типа выбранной игры очень хорошо помогает при поиске стратегии для нее.
2.5. Значение термина «стратегия»
Теперь я знаю о математических играх достаточно, чтобы успешно продолжать свое исследование. Для того чтобы начинать строить какие-то предположения по поводу нахождения стратегий, мне, собственно говоря, нужно сузить понятие «стратегия к игре» и более точно понимать, что это такое. Для того чтобы узнать смысл данного термина я воспользовалась разными словарями: «Словарь Ефремовой», «Словарь Ушакова», «Словарь Ожегова». Все определения к термину «стратегия» имеют общий смысл, и, проанализировав их, я смогла составить свое верное, лаконичное понятие.
Стратегия – это искусство планирования руководства, основанного на правильных, точных и далеко идущих прогнозах.
Термин инвариант означает свойство объекта, не изменяемое на протяжении всей игры.
2.6. Освоение составления стратегий
Для того чтобы начать подбирать стратегии мне нужно выдвинуть гипотезу, каким образом это можно делать.
Предположим, что для подбора стратегий мне необходимо будет сыграть несколько партий «в проигрыш», внимательно наблюдая за ходами противника, и подмечая все нюансы. Затем попробовать понять, почему выигрывает противник, и как это можно применить мне. После этого проверить свои рассуждения на практике.
Но откуда я смогу выбирать игры для своего исследования? Источник у меня есть – это приложение, которое все пятиклассники нашей школы установили дома на компьютер. На диске много полезной информации: тесты, тренажеры, головоломки, упражнения. И игры там тоже есть.
2.7. Составление стратегий к играм разного типа
Итак, я начала свое исследование. Выбрала игру понравившеюся мне и определила ее тип. Игра называется «Спички». Правила игры: на столе лежат N спичек. Два игрока берут по очереди от 1 до 4 спичек. Выигрывает тот, кто возьмет последнюю. Эта игра на доведение до числа, так как в ней ограничено количество спичек, которые можно взять. То есть, за партию ходов компьютера мы можем получить достаточно необходимой информации. Я поняла, что суть этой игры – нахождение контрольного числа. Это число 5, так как всегда будет остаток, сколько бы мы не брали спичек. Значит, нужно довести количество спичек до числа 5. Нужно посчитать количество спичек: если оно делится на 5, то первый ходит компьютер, а мы будем дополнять его ходы до контрольного числа. В обратном случае мы убираем остаток от деления. Таким образом, можно выиграть при любом количестве спичек.
Еще один пример – игра-шутка «Шоколадка». Правила: шоколадку с m долек нужно разломить так, чтобы вам достался последний разлом. Надо посчитать все кусочки, вычесть 1 (так как на каждые 2 кусочка приходится 1 разлом), если число четное – первый ходит компьютер, если число нечетное – первым ходите вы.
Следующий пример — игра «Кони». Правила игры: на шахматной доске размера M на N нужно ставить коней так, чтобы они не находились под боем. «Кони» — игра на симметрию, так как в ней нет чисел (доведение до числа), нет вообще каких-либо свойств кроме того, что конь ходит буквой «Г» (инвариант), правила довольно просты и в них ничего не скрыто (игра-шутка). Стратегия зкалючается в виде симметрии. Если есть возможность сделать ход в центр доски, то вы делаете этот ход. Если нет, то первым ходит противник, а вы действуете по правилам осевой симметрии.
Игра «На мелкие кусочки». Вначале игроки загадывают каждый по 1 числу. Листок разрывается на N кусков. Затем один из получившихся кусков разрывают еще на N кусков. Побеждает игрок если, разрывая лист таким образом можно получить число, которое он загадал вначале. Можно заметить, что при каждом разрывании на кусочки добавится столько кусочков, сколько было добавлено вначале. Это и есть инвариант. То есть из N нужно вычесть 1 и мы узнаем на сколько увеличивалось количество кусков с каждым разом. Затем из загаданного числа нужно вычесть так же 1, потому что вначале был 1 кусочек и мы узнаем сколько добавилось за все ходы. После этого проверяем делится ли полученное число на N-1. Разумеется, если это возможно то возможно и получить в процессе разрывания загаданное число.
Таким образом, я научилась составлять стратегии к математическим играм.
Заключительная часть
-
-
Планирование буклета.
-
Еще одной моей целью было создание буклета со всей необходимой информацией для побед в играх. Он нужен для рекламы, так как мало кто занимается математическими играми и для того, чтобы можно было находить стратегии с его помощью. Я создала структуру буклета и включила в нее все важные данные: значение термина стратегия, типы математических игр и алгоритм составления победного плана действий. Также я сделала свою эмблему и поместила ее на буклет.
-
-
Создание задачника.
-
После того, как я узнала все, что нужно о стратегиях и математических играх, я создала мини-книгу о математических играх. Сначала я разработала дизайн обложки и поместила на обложку свою эмблему. Затем включила в книгу обращение к читателям, некоторые исторические сведения о математических играх, значение терминов «стратегия» и «инвариант», алгоритм составления стратегии, 50 задач к играм сгруппированные по разделам и 10 дополнительных задач. В конце книги я указала ответы на задания.
-
-
Вывод
-
В дальнейшем, может быть, я продолжу эту работу для того, что бы искать стратегии для игр большей сложности совершенствования своих знаний о математических играх. Я думаю, что достигла своей цели, так как научилась создавать стратегии к играм и различать типы математических игр. Работа над проектом показала мне, что абсолютно в любой игре можно победить и из любой ситуации можно найти выход, если действовать в соответствии со стратегией. Мне понравилось исследовать стратегии, так как это очень интересно, развивает логику, и исход игры зависит только от моего хода мыслей.
Информационное обеспечение
Медиа ресурсы:
-
https://ru.wikipedia.org/wiki/%D2%E5%EE%F0%E8%FF_%E8%E3%F0#.D0.9F.D1.80.D0.B5.D0.B4.D1.81.D1.82.D0.B0.D0.B2.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D0.B8.D0.B3.D1.80
-
https://docviewer.yandex.ru/?uid=164720630&url=ya-mail%3A%2F%2F2300000003632316382%2F1.2&name=вывод.doc&c=54b68a93598f
-
http://yandex.ru/images/search?text=яндекс+картинки
-
http://tolkslovar.ru/s12967.html
Дополнительная литература:
А. С. Мерзляков. «Математика». Факультативный курс, 1 год обучения.
Просмотров работы: 3070
school-science.ru
Математические развлечения — Юнциклопедия
Математические развлечения — это и решение занимательных задач, и геометрические построения, и разгадывание числовых и механических головоломок, и математические игры и фокусы. Они развивают математические способности, сообразительность, логическое мышление, укрепляют память. Математические развлечения объединяют учение и игру, труд и отдых, но для занятия ими нужны и воля, и упорство, и настойчивость в достижении цели.
Головоломка «Ханойская башня». Перенесите кольца с левой оси на правую по правилам, изложенным в индийской легенде, не более чем за $31$ ход.
«Пифагор» — головоломка на складывание фигур.
«Волшебный веер» для отгадывания задуманных чисел.
Головоломка с перемещением шашек. Переместите черную шашку в крайнюю левую клетку, используя свободные боковые поля. На это требуется не менее $28$ перемещений шашек.
Задача на маневрирование. Сколько раз нужно перевести стрелку, чтобы поменять
Задачи-головоломки известны с давних времен, они встречаются уже в египетских папирусах. С I в. н. э. известна задача, получившая название задачи Иосифа Флавия, римского историка. Легенда рассказывает, что однажды отряд воинов, среди которых находились Флавий и его друг, был окружен. Из всех уставших, выбившихся из сил воинов, отчаявшихся спастись, нужно было выбрать двоих, которые предприняли бы попытку найти выход из окружения. Флавий предложил выбрать этих двоих путем пересчета так, чтобы каждый третий выбывал из построенных в круг воинов. Счет продолжался до тех пор, пока не осталось только два человека. Это были мудрый Флавий и его друг. На какие места в круге они встали, если в отряде был $41$ воин? Древняя рукопись сообщает: на $16$‑е и $31$‑е.
Игра «крестики-нолики» — одна из древнейших, её знают все. В квадрате, разделенном на девять клеток, игроки по очереди ставят в свободную клетку свой знак: крестик или нолик, стараясь выстроить три крестика или три нолика подряд. Тот, кто первым сделает это, выигрывает.
Если не делать ошибок, то игра оканчивается вничью, выиграть можно только в том случае, если противник ошибется. Самый правильный первый ход — занять угловую клетку. И если партнер не ответит на это своим знаком в центре, то он проиграл.
Гораздо интереснее усложненный вариант «крестиков‑ноликов» — игра «пять в ряд». На листке клетчатой бумаги двое играющих по очереди ставят крестики и нолики. Выигрывает игрок, который первым выставит пять своих знаков подряд по вертикали, горизонтали или диагонали. Размеры поля игры не ограничиваются.
Издавна играют в игру «ним». Пусть имеется одна или несколько групп предметов. Играющие по очереди берут предметы из групп по правилам, которые заранее устанавливают: какое количество предметов разрешается брать за один раз и из скольких групп. Существует множество вариантов игры, и для большинства известна наилучшая стратегия, ведущая к выигрышу. Наличие самих предметов не обязательно, можно играть и с числами.
Двое называют по очереди любое число от $1$ до $10$ и складывают названные числа. Выигрывает тот, кто первым доведет до $100$ сумму чисел, названных обоими игроками. Оптимальная стратегия в этой игре состоит в том, чтобы после хода противника называть числа, дающие, в сумме с предыдущими, члены следующего ряда: $12,\,23,\,34,$ $45,\,56,\,67,$ $78,\,89,\,100.$
С древности до наших дней очень популярны головоломки-шутки, они учат внимательно относиться к каждому слову условия задачи. Вот одна из них: в кармане лежат две монеты на общую сумму $15$ копеек. Одна из них не пятак. Что это за монеты?
Задача основана на психологической особенности человеческого восприятия — запоминать главные факты из условия задачи. В данном случае — то, что монета в кармане не пятак. И начинаются безуспешные попытки решения. А правильный ответ: $10$ коп. и $5$ коп., так как в условии задачи сказано, что только одна монета не пятак.
В старинной задаче «Волк, козел и капуста» крестьянину нужно перевезти через реку волка, козла и капусту. Лодка так мала, что в ней кроме крестьянина может поместиться или только волк, или только козел, или только капуста. Но если оставить волка с козлом, то волк его съест, а если оставить козла с капустой, то будет съедена капуста. Как быть крестьянину?
Головоломки типа этой задачи называются комбинаторными (см. Комбинаторика). В таких головоломках требуется путем взаимной перестановки элементов расположить их в соответствии с условием задачи в определенном порядке.
В случае с крестьянином переправу нужно начать с перевозки козла. Затем крестьянин возвращается и берет волка, которого перевозит на другой берег и там оставляет, но везет обратно на первый берег козла. Здесь он оставляет его и перевозит к волку капусту. А затем, возвращаясь, перевозит козла.
К комбинаторным головоломкам относится и знаменитый венгерский кубик Рубика, и полимино, и игры типа «Игра $15$», а также задачи «на маневрирование», головоломки с перестановкой шашек, «Ханойская башня» и др.
О Ханойской башне существует легенда, согласно которой где‑то в глубине джунглей в буддийском храме находится пирамида, состоящая из $64$ золотых дисков. День и ночь жрецы храма заняты разбором этой пирамиды. Они переносят золотые диски на новое место, строго соблюдая следующие правила: за один раз разрешается переносить только один диск и нельзя ни один диск класть на меньший диск. Предание гласит, что, как только жрецы закончат работу, грянет гром, храм рассыплется в пыль и наступит конец света.
Количество перемещений дисков, которые должны сделать жрецы, вычисляется по формуле $2^n−1,$ где $n$ — число дисков. Предположим, что жрецы работают так быстро, что за одну секунду переносят один диск. Тогда на всю работу им понадобится $2^{64}−1$ с, или около $580$ млрд лет. За это время храм, действительно, может рассыпаться в пыль.
Не менее интересное занятие, чем комбинаторные головоломки, — разгадывание арифметических ребусов, в которых нужно восстановить недостающие цифры. Для игр‑головоломок со спичками совсем не обязательно иметь спички, их можно заменить прутиками или черточками на бумаге или земле. Задачи на разрезание относятся к геометрическим головоломкам. Их удобно решать, вычертив предполагаемые фигуры на листке клетчатой бумаги.
Самые древние геометрические головоломки — это головоломки на складывание геометрических фигур из отдельных кусочков. Уже сами названия этих головоломок: «Пифагор», «Колумбово яйцо», «Архимедова игра» — говорят об их древности. Эти игры легко сделать самому, вырезав их из картона.
Топологические головоломки тоже одни из самых древних. К ним относятся всем известные лабиринты, проволочные, шнурковые и объемные сборно-разборные головоломки.
Удивительной для непосвященных кажется способность человека отгадывать задуманное другим число. Но если вы узнаете секреты математических фокусов, то сможете не только их показывать, но и придумывать новые.
Вы просите товарища задумать любое число, затем отнять от него $1,$ результат умножить на $2,$ из произведения вычесть задуманное число и сообщить вам результат. Прибавив к нему число $2,$ вы отгадаете задуманное. Секрет фокуса становится понятен, если записать предложенные действия в виде алгебраического выражения $(x−1)⋅2−x,$ где $x$ — задуманное число. Раскрыв скобки и выполнив действия, мы получим, что это выражение равно $x−2.$
Можно угадать результат арифметических действий над неизвестным числом, например, так. Ваш товарищ задумал число. Вы просите умножить его на $2,$ затем прибавить к произведению $12,$ сумму разделить пополам и вычесть из нее задуманное число. Какое бы число ни было задумано, результат всегда будет равен $6,$ так как $(2x+12)/2−x=6$ при любом $x.$
С помощью «волшебного веера», изображенного на рисунке, можно отгадать любое задуманное число от $1$ до $31.$ Вы просите указать, на каких лепестках веера написано задуманное число, а затем в уме складываете числа, стоящие под столбцами на этих лепестках. Их сумма всегда будет равна задуманному числу.
В наше время большую популярность получили логические задачи-головоломки. Вот пример решения такой задачи.
Три мальчика, устав от игр, прилегли отдохнуть под деревом и уснули. Пока они спали, их товарищи испачкали им сажей лбы. Проснувшись и взглянув друг на друга, мальчики начали смеяться. Внезапно один из них замолчал, так как понял, что его лоб тоже испачкан. Он подумал: «Мы смеемся, потому что каждый из нас считает, что его лицо чистое. Но если мое лицо чистое, то Коле должен быть непонятен смех Андрея. Раз Андрей смеется, а мое лицо чистое, то он смеется над Колей. Коля должен это понять и перестать смеяться. А раз он не перестает, значит, мой лоб тоже в саже».
Попробуйте ответить на вопрос еще одной логической головоломки.
Если головоломка, которую вы разгадали перед тем, как вы разгадали эту, была труднее, чем головоломка, которую вы разгадали после того, как вы разгадали головоломку, которую вы разгадали перед тем, как вы разгадали эту, то была ли головоломка, которую вы разгадали перед тем, как вы разгадали эту, труднее, чем эта? Ответ: да.
yunc.org
Математические развлечения и игры
Математическими развлечениями называют обычно разнообразные задачи и упражнения занимательного характера, требующие проявления находчивости, смекалки, оригинальности мышления, умения критически оценить условия или постановку вопроса: в частности — головоломки, задачи на превращение одной фигуры в другую путём разрезания и переложения частей, фокусы, основанные на вычислениях, математические игры. К математическим играм относят либо игры, имеющие дело с числами, фигурами и тому подобным, либо игры, исход которых может быть предопределён предварительным теоретическим анализом. С появлением и развитием математических игр теории (См. Игр теория) термин «математические игры» (в смысле этой статьи) постепенно выходит из употребления.
Игра Баше. Из кучки, содержащей n (например, 35) предметов, двое играющих берут поочерёдно не более чем по m (например, 5) предметов. Выигрывает тот, кто возьмёт последние предметы. Теория игры устанавливает, что если n не делится на m + 1, то начинающий игру непременно выиграет, если каждый раз будет оставлять партнёру число предметов, кратное m + 1 (в примере — кратное 6).
Игра «15». Играет один человек. На шестнадцатиклеточной доске расположены в случайном порядке 15 перенумерованных шашек. Передвигая шашку одну за другой на свободную клетку с любой из смежных с ней клеток, требуется упорядочить расположение шашек (привести к нормальному расположению — положению 1, указанному на рисунке 1). Теоретический анализ игры, известный с 1879, показывает, что задача может быть решена только в том случае, если число инверсий (См. Инверсия) (то есть число нарушений нормального расположения), образуемых номерами шашек в исходном положении, имеет ту же чётность, что и номер строки, в которой есть свободная клетка. Чтобы установить число инверсий, надо для каждой шашки подсчитать число предшествующих ей шашек с большим номером и сложить все эти числа; их сумма и равна искомому числу инверсий. При этом устанавливается следующая последовательность в исходном расположении шашек: слева направо вдоль строк и сверху вниз при переходе от одной строки к другой. Например, в расположении II (рис. 1) число инверсий чётно (равно 38), а свободная клетка находится в чётной (во 2-й) строке, то есть расположение II может быть приведено к нормальному. Напротив, расположение III привести к нормальному невозможно, так как число инверсий в нём нечётно (равно 1: шашка с № 15 предшествует шашке с № 14), а свободная клетка находится в 4-й строке (в строке с чётным номером).
Полное математическое обоснование имеется также у таких М. р. и и., как вычерчивание фигур одним росчерком, лабиринты, комбинированные задачи на шахматной доске и другие. Большая группа М. р. и и. связана с поисками оригинальных и красивых решений задач, допускающих практически неисчерпаемое или даже бесконечное множество решений.
К числу таких развлечений относится, например, «составление паркетов» — задача о заполнении плоскости правильно чередующимися фигурами одного и того же вида (например, одноимёнными правильными многоугольниками) или нескольких данных видов. Если «двухцветный квадратный паркет» с осями симметрии А’ А и B’B (см. рис. 2) составляется из 4n2 равных квадратов, каждый из которых разбит диагональю на белую и чёрную половины, то число различных паркетов равно 4n2 (это число быстро растет при возрастании n).
Очень большое, до сих пор точно не установленное число решений имеют также: задача Эйлера о шахматном коне — обойти ходом коня шахматную доску, побывав на каждой клетке по одному разу, и задача о составлении многоклеточных магических квадратов (См. Магический квадрат). В подобного рода задачах интересуются обычно определением числа решений, разработкой методов, дающих сразу большие группы решений. Математическое содержание ряда других М. р. и и. — в установлении наименьшего числа операций, необходимых для достижения поставленной цели. К таким развлечениям относятся: задачи типа «переправ», «размещений» или игры, аналогичные игре «ханойская башня», суть которой в подсчёте числа ходов, необходимых для перенесения пластинок со столбика А (см. рис. 3) на столбик С, пользуясь столбиком В, если за один ход можно переносить лишь одну пластинку с любого столбика на любой другой, но нельзя класть большую пластинку выше меньшей.
М. р. и и. пользовались вниманием многих крупных учёных [Леонардо Пизанский (13 век), Н. Тарталья (16 век), Дж. Кардано (16 век), Г. Монж (2-я половина 18 — начало 19 века), Л. Эйлер (18 век) и другие]. Сборники М. р. и и. начали появляться с 17 века. Содействуя повышению интереса учащихся к математике, развитию сообразительности, настойчивости и внимания, М. р. и и. применяются также и в педагогическом процессе. В России это нашло отражение уже в «Арифметике» Л. Ф. Магницкого (1703) и даже в математических рукописях 17 века.
Лит.: Игнатьев Е. И., В царстве смекалки или арифметика для всех, 2 изд., кн. 1—3, М. — Л., 1924 — 25; Кордемский Б. А., Математическая смекалка, 8 изд., М., 1965; Перельман Я. И., Живая математика, 9 изд., М., 1970: его же, Занимательная арифметика, 9 изд., М., 1959; его же, Занимательная алгебра, 12 изд., М., 1970; его же, Занимательная геометрия, 11 изд., М., 1959; Шуберт Г., Математические развлечения и игры, перевод с немецкого, Одесса, 1911; Арене В., Математические игры, перевод с немецкого, Л. — М., 1924; Гарднер М., Математические чудеса и тайны. Математические фокусы и головоломки, перевод с английского, 2 изд., М., 1967; его же, Математические досуги, перевод с английского, М., 1972.
Рис. 3 к ст. Математические развлечения и игры.
Рис. 2 к ст. Математические развлечения и игры.
Рис. 1 к ст. Математические развлечения и игры.
slovar.wikireading.ru
ФPAГMEHT УЧЕБНИКА (…) Существует ряд аналогичных задач, в которых для искомой функции трудно или невозможно составить разностное уравнение. Так, например, будет обстоять дело, если короля заменить шахматным конем или если в задачах о ладье и о пауке запретить некоторые из ходов, поставив на доске перегородки или уничтожив некоторые стерженьки в пространственной сетке. В такого рода задачах зоны, до всех клеток которых можно добраться за входов (k — \, 2, 3,…), могут иметь весьма своеобразный вид, поэтому клетки различных зон удобно либо нумеровать, либо закрашивать в разные цвета. При этом, конечно, прежде чем определять А + 1-ю зону, надо выявить все клетки k-n зоны. Крупными цифрами на рис. 23 отмечены клетки, принадлежащие первым двум зонам в задаче о коне на неограниченной шахматной доске, мелкими цифрами указано, сколькими способами конь из клетки А может попасть в отдельные клетки этих зои. Очевидно, третьей зоне будут принадлежать те клетки из числа незаполненных, на которые можно ходом коня перейти хотя бы с одной клетки второй зоны. Например, клетка В принадлежит третьей зоне, и так как она связана ходом коня с пятью (обведенными рамками) клетками второй зоны, то из клетки А конь может попасть в нее девятью способами (14-2 +2 +2 +2). Аналогично найдем, что до клеток С, D и Е третьей зоны конь может добраться одним, шестью и двенадцатью способами. Убедитесь сами, что при наличии перегородок, указанных на рис. 24, двенадцатая зона в задаче о ладье, выходящей из А, состоит из четырех клеток, и до каждой из них ладья может добраться восемью способами (4г). Аналогичные вопросы можно поставить в задачах о короле и о пауке, причем совокупность запрещенных ходов можно выбирать по-всякому. При этом можно стремиться к тому, чтобы «/г-зоны» имели какой-нибудь замысловатый вид. Легко убедиться, что в задаче о коне пятая, шестая и т. д. зоны имеют довольно правильный вид, причем при k 5 5 для числа Nk клеток k-й зоны имеет место формула: Nk= 120-|-28(/г — 5). Попробуйте подумать над следующими вопросами: 1. Сколькими способами на неограниченной шахматной доске король может попасть за четыре хода в четвертую зону?(“) 2. Сколькими способами две (три, четыре) вешки, стоящие на второй линии шахматной доски, могут быть доведены до 8-й линии? (“) (Имеются в виду различные способы чередования ходов, делаемых разными пешками, а также право каждой из них воспользоваться двойным начальным ходом или отказаться от него.) 3. Не удастся ли вам найти общее решение задачи о коне, т. е. определить (хотя бы при k s5) зависимость числа способов достижения отдельных клеток неограниченной шахматной доски от положения, ими занимаемого. Аналогичный вопрос можно поставить при тех или иных значениях р и q для «р, § 16. МАГИЧЕСКИЕ КВАДРАТЫ Магическим квадратом» назовем квадрат, разделенный на пг клеток, заполненных первыми пг натуральными числами так, что суммы чисел, стоящих в любом горизонтальном или вертикальном ряду, а также на любой из диагоналей квадрата, равны одному и тому же п(пг4-1) числу sn = — Если одинаковы лишь суммы чисел, стоящих в любом горизонтальном и вертикальном ряду, то квадрат называют полу магическим. На рис. 25, а приведен магический квадрат, называемый квадратом Дюрера по имени математика и художника XVI века, изобразившего его на известной картине «Меланхолия»; два нижних средних числа этого квадрата образуют число 1514 — дату создания картины. Заметим, что каждое из чисел 1, 3, 7, 9 входит в две, а каждое из чисел 2, 4, 6, 8 — в три указанные суммы и лишь число 5 входит в четыре суммы. С другой сто-роны, из восьми трехклеточных рядов: трех горизонтальных, трех вертикальных и двух диагональных — через каждую из угловых клеток квадрата проходит па три, через центральную клетку по четыре и через каждую из остальных клеток по два ряда. Следовательно, число 5 должно обязательно стоять в центральной клетке, числа 2, 4, 6, 8 — в угловых клетках, а числа 1, 3, 7, 9 — в остальных клетках Так как числа 2, 4, 6 и 8 можно расставить лишь восьмью способами в угловых клетках квадрата так, чтобы каждая из диагональных сумм равнялась пятнадцати, а расположение этих чисел вполне определяет положение чисел 1, 3, 7, 9, то можно утверждать, что существует лишь восемь девятиклеточных магических квадратов. Два из них, являющиеся зеркальным изображением друг друга, приведены на рис. 25, б, в; остальные шесть могут быть получены из этих квадратов вращением их вокруг центра на 90°, 180°, 270°. С возрастанием л число N различных квадратов с л клетками быстро растет, и хотя общая формула, выражающая зависимость N от л, до сих пор не найдена, однако установлено, например, что существует 880 различных шестнадцатиклеточных магических квадратов, а уже при л = 7 число магических квадратов достигает сотен миллионов. |
sheba.spb.ru
| |||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||
2011 — 2018 |
www.rulit.me
Математические развлечения и игры — это… Что такое Математические развлечения и игры?
Математическими развлечениями называют обычно разнообразные задачи и упражнения занимательного характера, требующие проявления находчивости, смекалки, оригинальности мышления, умения критически оценить условия или постановку вопроса: в частности — головоломки, задачи на превращение одной фигуры в другую путём разрезания и переложения частей, фокусы, основанные на вычислениях, математические игры. К математическим играм относят либо игры, имеющие дело с числами, фигурами и тому подобным, либо игры, исход которых может быть предопределён предварительным теоретическим анализом. С появлением и развитием математических игр теории (См. Игр теория) термин «математические игры» (в смысле этой статьи) постепенно выходит из употребления.Игра Баше. Из кучки, содержащей n (например, 35) предметов, двое играющих берут поочерёдно не более чем по m (например, 5) предметов. Выигрывает тот, кто возьмёт последние предметы. Теория игры устанавливает, что если n не делится на m + 1, то начинающий игру непременно выиграет, если каждый раз будет оставлять партнёру число предметов, кратное m + 1 (в примере — кратное 6).
Игра «15». Играет один человек. На шестнадцатиклеточной доске расположены в случайном порядке 15 перенумерованных шашек. Передвигая шашку одну за другой на свободную клетку с любой из смежных с ней клеток, требуется упорядочить расположение шашек (привести к нормальному расположению — положению 1, указанному на рисунке 1). Теоретический анализ игры, известный с 1879, показывает, что задача может быть решена только в том случае, если число инверсий (См. Инверсия) (то есть число нарушений нормального расположения), образуемых номерами шашек в исходном положении, имеет ту же чётность, что и номер строки, в которой есть свободная клетка. Чтобы установить число инверсий, надо для каждой шашки подсчитать число предшествующих ей шашек с большим номером и сложить все эти числа; их сумма и равна искомому числу инверсий. При этом устанавливается следующая последовательность в исходном расположении шашек: слева направо вдоль строк и сверху вниз при переходе от одной строки к другой. Например, в расположении II (рис. 1) число инверсий чётно (равно 38), а свободная клетка находится в чётной (во 2-й) строке, то есть расположение II может быть приведено к нормальному. Напротив, расположение III привести к нормальному невозможно, так как число инверсий в нём нечётно (равно 1: шашка с № 15 предшествует шашке с № 14), а свободная клетка находится в 4-й строке (в строке с чётным номером).Полное математическое обоснование имеется также у таких М. р. и и., как вычерчивание фигур одним росчерком, лабиринты, комбинированные задачи на шахматной доске и другие. Большая группа М. р. и и. связана с поисками оригинальных и красивых решений задач, допускающих практически неисчерпаемое или даже бесконечное множество решений.
К числу таких развлечений относится, например, «составление паркетов» — задача о заполнении плоскости правильно чередующимися фигурами одного и того же вида (например, одноимёнными правильными многоугольниками) или нескольких данных видов. Если «двухцветный квадратный паркет» с осями симметрии А’ А и B’B (см. рис. 2) составляется из 4n2 равных квадратов, каждый из которых разбит диагональю на белую и чёрную половины, то число различных паркетов равно 4n2 (это число быстро растет при возрастании n).
Очень большое, до сих пор точно не установленное число решений имеют также: задача Эйлера о шахматном коне — обойти ходом коня шахматную доску, побывав на каждой клетке по одному разу, и задача о составлении многоклеточных магических квадратов (См. Магический квадрат). В подобного рода задачах интересуются обычно определением числа решений, разработкой методов, дающих сразу большие группы решений. Математическое содержание ряда других М. р. и и. — в установлении наименьшего числа операций, необходимых для достижения поставленной цели. К таким развлечениям относятся: задачи типа «переправ», «размещений» или игры, аналогичные игре «ханойская башня», суть которой в подсчёте числа ходов, необходимых для перенесения пластинок со столбика А (см. рис. 3) на столбик С, пользуясь столбиком В, если за один ход можно переносить лишь одну пластинку с любого столбика на любой другой, но нельзя класть большую пластинку выше меньшей. М. р. и и. пользовались вниманием многих крупных учёных [Леонардо Пизанский (13 век), Н. Тарталья (16 век), Дж. Кардано (16 век), Г. Монж (2-я половина 18 — начало 19 века), Л. Эйлер (18 век) и другие]. Сборники М. р. и и. начали появляться с 17 века. Содействуя повышению интереса учащихся к математике, развитию сообразительности, настойчивости и внимания, М. р. и и. применяются также и в педагогическом процессе. В России это нашло отражение уже в «Арифметике» Л. Ф. Магницкого (1703) и даже в математических рукописях 17 века.Лит.: Игнатьев Е. И., В царстве смекалки или арифметика для всех, 2 изд., кн. 1—3, М. — Л., 1924 — 25; Кордемский Б. А., Математическая смекалка, 8 изд., М., 1965; Перельман Я. И., Живая математика, 9 изд., М., 1970: его же, Занимательная арифметика, 9 изд., М., 1959; его же, Занимательная алгебра, 12 изд., М., 1970; его же, Занимательная геометрия, 11 изд., М., 1959; Шуберт Г., Математические развлечения и игры, перевод с немецкого, Одесса, 1911; Арене В., Математические игры, перевод с немецкого, Л. — М., 1924; Гарднер М., Математические чудеса и тайны. Математические фокусы и головоломки, перевод с английского, 2 изд., М., 1967; его же, Математические досуги, перевод с английского, М., 1972.
Рис. 3 к ст. Математические развлечения и игры.
Рис. 2 к ст. Математические развлечения и игры.
Рис. 1 к ст. Математические развлечения и игры.
dic.academic.ru